Nonnegative solutions to superlinear problems of generalized Gelfand type

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact multiplicity of solutions to superlinear and sublinear problems

(f2) lim u→∞ f(u) u =f+ ¿ 0; lim u→−∞ f(u) u =f− ¿ 0: For the de5niteness, we assume f+ ¿f−, and when f+ =f−, we use f± to represent it. We will consider f being either superlinear or sublinear. f is said to be superlinear if f(u)=u is decreasing in (0;∞) and is increasing in (−∞; 0); and f is said to be sublinear if f(u)=u is increasing in (0;∞) and is decreasing in (−∞; 0): The semilinear equ...

متن کامل

On the existence of nonnegative solutions for a class of fractional boundary value problems

‎In this paper‎, ‎we provide sufficient conditions for the existence of nonnegative solutions of a boundary value problem for a fractional order differential equation‎. ‎By applying Kranoselskii`s fixed--point theorem in a cone‎, ‎first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function‎. ‎Then the Arzela--Ascoli theorem is used to take $C^1$ ...

متن کامل

A Priori Estimates of Solutions of Superlinear Problems

In this survey we consider superlinear parabolic problems which possess both blowing-up and global solutions and we study a priori estimates of global solutions.

متن کامل

On forced periodic solutions of superlinear quasi - parabolic problems ∗

We study the existence of periodic solutions for a class of quasi-parabolic equations involving the p-Laplacian (or any other nonlinear operators of similar class) perturbed by nonlinear terms and forced by rather irregular periodic in time excitations (including what we call abrupt changes). These equations may model problems for which, aside from the presence of the kind of nonlinear dissipat...

متن کامل

Solutions to Minimal Generalized Relative Pose Problems

We present a method to obtain the solutions to the generalized 6-point relative pose problem. The problem is to find the relative positions of two generalized cameras so that six corresponding image rays meet in space. Here, a generalized camera is a camera that captures some arbitrary set of rays and does not adhere to the central perspective projection model. The cameras are assumed to be cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 1995

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s1048953395000256